== eddylab

The eddyCAN interface on the TXx

May 31, 2016

Contents

1

2

3

Essentials

CAN-Bus

2.1 Bitrates e e e e e e e e
2.2 Connector
2.3 Termination L e e e e e e e

eddyCAN protocol

3.1 Communication objects and message types
3.2 CAN identifier distribution o
3.3 Device Configuration Lo
3.3.1 Read and Write Access
3.3.2 Index descriptions Lo
3.3.3 Aborted Transfers
3.4 Network management (NMT)
3.4.1 Heartbeat
3.5 Error Indication

1 Essentials

Communication with eddylab’s Eddy Current driver is based on USB or the CAN-Bus. This
document gives full insight into the eddyCAN-Protocol.

The eddyCAN-Protocol is closely related to the well known CANopen-Protocol. eddyCAN is
a proprietary CAN-protocol based on CANopen - as it does not fulfill all (but many) manda-
tory specifications of the CANopen-Protocol. Nevertheless - all the naming conventions that
are known from CANopen are used here as well. A fully compliant CANopen-interface will
be available shortly.

2 CAN-Bus

2.1 Bitrates

The CAN-specification defines the physical medium and the transfer mechanisms on the bus.
The eddyCAN-protocol uses the 11-bit identifier and supports bitrates up to 1 Mbit. Table 1
contains the available bitrates and their corresponding cable lengths.

Bitrate ‘ Max. cable length

1 MBit/s 25m
500 kBit /s 50m
250 kBit /s 250m?
100 kBit/s 500m!
50 kBit /s 1000m?

Table 1: CAN bitrates and cable lengths.

2.2 Connector

The TX-Driver has a D-Sub 9 connector. Only two pins (2 and 7) of this connector are
assigned to the CAN-Bus. The remaining pins are assigned to other functions - and are not
n.c. — do not apply random voltages or loads! Table 2 shows the pin assignment.

Pin ‘ Function ‘ Comment
1 Output 1 switching output 0..5V
2 CAN-Low
3 GND optional for the CAN-Bus
4 Input 1 switching input 0..5V
5 Input 2 switching input 0..5V
6 GND Gnd for the switching inputs and outputs
7 | CAN-High
8 Output 2 switching output 0..5V
9 n.c.

Table 2: Pin assignment on the D-Sub 9

'For a bus length greater than about 200m the use of optocouplers is recommended. If opto-couplers are
placed between CAN controller and transceiver this affects the maximum bus length depending on the opto-
coupler’s propagation delay.

2For a bus length greater than about 1km - bridge or repeater devices may be needed.

2.3 Termination

The twisted pair cable has to be terminated with 120-2 on both ends. We recommend to use
CAN-Connectors with integrated (switchable) resistors. These connectors facilitate the setup
of fieldbus systems. The right connector in Figure 1 is the terminated (resistor is switched
on) end of the bus. The left connector shows an intermediate connection on the bus (resistor
is switched off).

Figure 1: CAN-Bus connectors with integrated termination.

3 eddyCAN protocol

As mentioned above - the eddyCAN-Protocol is a proprietary CAN-protocol based on the
general CANopen communication profile. The components of the protocol are summarized as
follows.

1. Communication objects and message types.
2. CAN identifier distribution
3. Device configuration

4. Network management

3.1 Communication objects and message types

This section gives an overview of the messages on the network and their functions. Basically
there are four types of messages.

Network management (NMT): The purpose of these messages is to control the nodes
on the network. NMT messages are used to initialize, start or stop a node. Further use is to
monitor the presence of a node (supervision of the network). NMT messages are transmitted
from a master to control the slaves on the network. The slaves do not confirm an NMT-
message.

Process data object (PDO): These are used to transfer and receive realtime data. All of
the 8 databytes in a CAN-frame can be used to exchange data (i.e. positions). A node that
transmits data is called a producer (TPDO) and a node that receives data is called a consumer
(RPDO). The TX-Driver is a PDO producer. The data within a PDO-message is the position
of the sensor. The mechanisms that trigger a message transmission can be of different nature.

e The transmission can be triggered timer driven by a device-internal clock. This results
in a constant sampling-rate and a predictable bus load. See Update Time and Nr Of
Nodes in section 3.3.2.

e For low sampling-rates or snapshotted data the remotely triggered transmission will
minimize the amount of needless bus load. The TX-Driver will transmit a message after
the reception of a remote frame. The remote frame needs to carry the identifier of PDO3
(see table 3) and the required number of bytes to be received.

e For the purpose of remotely triggering synchronous TPDOs over the entire network a
SYNC message can be sent. Every node on the network configured to transfer a PDO
upon the reception of a SYNC message will do so. The identifier of a SYNC message is
always 128/(80h) (see table 3). The datalength is always zero.

Databytes in PDOs: The TX-Driver exists as single- and dual-channel driver. Each
with the option to transfer the position of an incremental encoder. This results in four possible
interpretations of eight databytes in a CAN-frame. The following figures reflect the possible
byteorders:

Byte0..3

Position 1

Figure 2: PDO structure (4 bytes) for a single-channel driver without encoder

Figure 3: PDO structure (8 bytes) for a dual-channel driver without encoder

Figure 4: PDO structure (6 bytes) for a single-channel driver & encoder

Byte0..3

Byte4..7

Position 1

Position 2

Byte0..3

Byted&5

Position 1

Encoder

Byte0..2

Byte3..5

Byte6&7

Position 1

Position 2

Encoder

Figure 5: PDO structure (8 bytes) for a dual-channel driver & encoder

Datatypes in PDOs: The position-value in a PDO is always 4 bytes long except for a
dual-channel driver & encoder (3 bytes in this case). The byte order is always LSB first (i.e.
in a dual-channel message without encoder - byte 0 is the LSB of Position 1 and Byte 4 is the
LSB of Position 2). The conversion to a fixed-point value in [mm)] is as follows: interpret the
32-bit-value as integer and divide this value by 227.

The 3 byte position (dual-channel driver & encoder) is converted analogously: interpret the

24-bit-value as integer and divide this value by 2!9. The byte order is always LSB first (i.e.
in dual-channel message with encoder - byte 0 is the LSB of position 1, byte 3 is the LSB of
position 2 and byte 6 is the LSB of the encoder value).

The encoder is a 16-bit-integer value which reflects the native data-representation of incre-
mental encoders.

Service data object (SDO): SDOs are used to configure a device. Every device has a set
of parameters over a defined index range. Entries up to a length of four bytes can be accessed
with SDO read and write commands. SDOs are not used to transfer realtime data. An SDO
is always followed by a confirmation message.

Special messages: SYNC and Error For the purpose of synchronizing events on the
network - a SYNC message can be sent from the master. An interesting event on a TX-Driver
network is the synchronous sampling of all positions. The transmission of the simultaneously
sampled data will be accomplished in sequential fashion (with PDOs).

Furthermore - errors on a node (TX-Driver) are indicated in error messages. Most errors
on a network result from communication or protocol errors.

3.2 CAN identifier distribution

The eddyCAN protocol (same as in CANopen) is based on the 11-bit CAN-identifier. The
11-bit identifier is split up into a functional part and a node-id part. The node-id has to be
unique for every device on the network. The functional part defines the type of message or
service and is applicable for every device of the same type. This combined identifier (known
as COB-ID in CANopen) will be unique for every CAN-message on the network - for the case
that all node-ids are unique. A device’s node-id has to be defined by the end-user (system
integrator).

The node-id of eddylab’s TX-Driver can be defined on the CAN-Bus or with eddylab 2.0.1
and newer versions.

The combination of functional part (4-bit) and node-id part (7-bit) in the 11-bit-identifier
results in a defined connection set. The 7-bit node-id allows 127 slave-nodes (physical) on the
network. Table 3 reflects the identifier distribution. The highest priority identifier is 0. The
higher the identifier of a message the lower its priority.

Message ‘ Identifier(s) ‘ Comment
NMT 0 broadcast administration
SYNC 128(80h) broadcast synchronisation
Error 128(80h) + node-id error indication

PDO1(tx) | 384(180h) + node-id | cyclic transmission (internal trigger)
PDO2(tx) | 640(280h) + node-id transmission after sync request
PDO3(tx) | 896(380h) + node-id transmission after remote request
SDO(tx) | 1408(580h) + node-id | transmission of configuration data
SDO(rx) | 1536(600h) + node-id reception of configuration data
Heartbeat | 1792(700h) + node-id transmission of the heartbeat

Table 3: Identifier Distribution on the TX-Driver

Example: A device configured with a node-id of 2 will transmit the PDO1 with a CAN-
identifier of 386(182h). If the same device receives a SYNC-request (128(80h)) - PDO2 with a

CAN-identifier of 642(282h) will be transmitted. The content of each message will always be
the position(s) of the TX-Driver+Sensor(s). The major difference between PDO1 and PDO2
is the kind of triggering the messages.

3.3 Device Configuration

All the configurable entries (or objects) on the TX-Driver are organized within a strictly
defined list. The entries in this list can be addressed with a 16-bit index and a 8-bit subindex.
Read and write access on the index is accomplished with SDOs (see section 3.1). Table 4
reflects the available configuration entries. The index starts at 2000h - this corresponds with
the manufacturer specific profile area in the CANopen object dictionary.

Index(hex) ‘ Name ‘ Type ‘ Access ‘ Subindex(hex)
2000 Node-1D Unsigned8 RW -
2001 Bitrate Index Unsigned8 RW -
2002 Nr Of Nodes Unsigned8 RW -
2003 Update Time Unsigned16 | RW -
2004 Can Config Register | Unsigned16 | RW -
2005 Basic Config Register | Unsigned16 | RW -
2006 Filter Unsigned8 RW 1;2
2007 Comparator Unsigned32 | RW 1;2
2008 Counts Per Revolution | Unsigned16 | RW -
2009 Encoder Resolution Unsigned16 | RW -
200A Reset Encoder - W -

Table 4: Configuration Index on the TX-Driver

3.3.1 Read and Write Access

The configuration entries can be accessed with SDOs. The TX-Driver can be interpreted as
a provider of its configuration data. Data exchange (read or write) is always a confirmed
service and is never initiated by the TX-Driver. The TX-Driver on the network responds
(confirmation) with data or accepts data. That is: for the case that data shall be written to
the device - the request contains data. The actual procedure (read or write) is defined within
the first byte of the CAN-frame (Command byte). An SDO is always 8 bytes long and has a
defined structure as shown in figure 3.3.1.

ByteO Bytel..2 Byte3 Byte4..7

Command Index Sub-Index Data

Figure 6: Basic structure of a SDO

Byte 0:
function.

is the command byte. Table 5 lists the command byte and the corresponding

Bytes 1..2: are the index bytes. These address the 16-bit index. The byte order is LSB
first. This means that the index 2001h will be transferred as byte 1: 01h and byte 2: 20h.

Byte 3: is the subindex. If no subindices are available on an index - the subindex is always
0. If no subindex is available on an index and a subindex entry is requested - the result will
always be the entry at 0 (no subindex).

Bytes 4..7: are the data bytes. Data with a maximum length of 4 bytes can be transferred
within one SDO-frame. The byte order is LSB first for data sets greater than one byte. Each
entry has a specific length. This length is given in the index descriptions (section 3.3.2) and
in table 4.

Direction as seen from TX | Command Function
—3 22h write data to device (4 bytes max)
— 60h confirmation after writing data to device
— 40h request data from device
— 43h confirmation with 4 bytes data
— 4Bh confirmation with 2 bytes data
— 4Fh confirmation with 1 byte data
— 80h error

Table 5: Command bytes and functions

3.3.2 Index descriptions

Node-ID (2000h/1byte): is the unique 7-bit-identifier on the network (value range 1..127).
A restart is required after modifying this value to become valid. This parameter can also be
modified with eddylab.

The Bitrate Index (2001h/1byte): defines the bitrate on the network. All nodes on the
network need to be configured with the same bitrate. Table 6 lists the bitrate index and the
corresponding bitrate. A restart is required after modifying this value to become valid. This
parameter can also be modified with eddylab.

Bitrate Index (dec) ‘ Bitrate

0 50kBit/s
1 100kBit /s
2 250kBit /s
3 500kBit /s
4 1MBit/s

Table 6: Bitrate Index

A Nr Of Nodes (2002h/1byte): can be defined to facilitate the efficient usage of the
CAN-Bus (for PDOL1 - device internal clocked transmission of position data). This function
is only useful for networks which are strongly dominated by TX-Drivers (i.e. this functions
assumes a very low busload that is caused by other 'Not-TX-Drivers’.) The purpose is to
generate a 50%-busload - by defining the number of participating TX-Drivers (network-wide)
on each TX-Driver. The TX-Drivers auto-generate a transmission-rate that fulfills a 50%-
busload condition. The value range is 1..127. This function becomes active by setting the
following parameter (Update Time 2003h) to a value of 65535.

The Update Time (2003h/2bytes): defines the time in [ms] that passes between subse-
quent updates on the CAN-Bus (PDO1). The value range is 1..65534 ms. A value of 0 inhibits
the timer driven transmission of position data. This setting is needed if only the remotely
driven (PDO3) or sync driven (PDO2) transmission of position data is desired. A value of
65535 activates the 50%-busload function.

3The — corresponds with the incoming message.

The Can Config Register (2004h/2bytes): configures three CAN-parameters on the
TX-Driver. If Autostart Operational is set - the device will enter the Operational state
after Boot-Up. Sync Encoder additionally transmits the position of a connected encoder. If
Heartbeat is set - the TX-Driver will periodically transmit a Heartbeat-message. Table 7 lists
the register value and the corresponding functionality.

Value ‘ Autostart Operational ‘ Sync Encoder | Heartbeat

0

1 X

2 X

3 X X

4 X
9 X X
6 X X
7 X X X

Table 7: Can Register Functions

The Basic Config Register (2005h/2bytes): configures the encoder-interface. If Rotary
Encoder is set - the device assumes a rotary encoder. If not set - the TX-Driver assumes a linear
encoder. If desired the counting direction can be reversed with Reverse Encoder Direction.
Table 8 lists the register value and the corresponding functionality.

Value ‘ reserved ‘ Rotary Encoder ‘ Reverse Encoder Direction
0

2
4 X
6

Table 8: User Register Functions

The Filter Index (2006h/1byte): defines the edge frequency for every channel. The TX-
Driver can be configured with five edge frequencies. A subindex of 1 addresses channel 1 and
a subindex of 2 addresses channel 2. Table 9 lists the filter index and the corresponding edge
frequency.

Filter Index (dec) ‘ edge frequency

0 no Filter is active
1 10 Hz
2 100 Hz
3 1 kHz
4 10 kHz

Table 9: Selectable Filters on the TX-Driver

A comparator value (2007h/4bytes): can be defined for every channel. The value range
is 0..1. A comparator value of 0.5 means that the output will be switched at 50% of the
sensor’s measuring range. If the sensor’s position is above 50% the output will be high -
otherwise low. For single channel devices both comparator values are assigned to one chan-
nel. This permits the definition of a low and a high threshold for one channel. The subindex

addresses the respective channel. The datatype is a fixed-point-value between 0..1. The value
is calculated as follows. Multiply the comparator value by 230, This 32-bit-integer value has
to be transferred to the TX-Driver.

Example: If the desired comparator value is 0.5 - the integer-value is 0.5 x 239 = 536870912.

Counts per Revolution (2008h/2bytes): defines the number of increments of a rotary
encoder (4x encoding). The value range is 1..65535.

The Encoder Resolution (2009h/2bytes): is the resolution of a linear encoder (4x en-
coding) in [nm]. A typical value is 100 nm.

Reset (200Ah): the encoder (linear) if an over- or underrun occurred. No data is trans-
ferred.

3.3.3 Aborted Transfers

If an index cannot be accessed or does not exist the confirmation message from the TX-Driver
contains a error code. The command byte of a message containing an error code is always 80h
(see Table 3). The error code of an aborted transfer is 4 bytes long. The supported codes are:

Code (hex) ‘ meaning
05040001h Command unknown
06020000h Index does not exist
06090011h Subindex does not exist
06090030h Range exceeded

06010001h | Attempt to read a write only object
06010002h | Attempt to write a read only object
08000000h General error

Table 10: Codes for aborted transfers

3.4 Network management (NMT)

Every node (slave) can be in three different states after Boot-Up. These are Pre-Operational,
Operational and Stopped. The actual state is controlled from the master. Each state offers a
specific functionality.

— Boot-Up «

A

— Pre-Operational

Stopped

N
7

— Operational

Figure 7: NMT-States

The Pre-Operational state is used for device configuration. The device can be configured
with SDOs. The Pre-Operational state is the default state after Boot-Up. This default state
can be modified to Operational in the CAN-Config-Register (2004h).

In Operational a node transfers PDOs. These can be triggered internally by a timer, by
remote frames or by a sync request. The kind of trigger is configured with the parameter
Update Time (2003h). If this value is zero - the TX-Driver will only react on sync and
remote messages. If this value is 65535 - the 50%-busload function is active. All values between
1..65534 define the time in [ms| that passes between subsequent messages. Configuration with
SDOs is not possible.

A Stopped device does not provide SDOs or PDOs. This state only reacts on NMT-
messages to other states.

The state of a node is controlled with NMT-messages. The basic layout of a NMT-message is
as follows: The identifier of the message is always 0. The message is 2 bytes long. The first

id ByteO Bytel

0 Command Node-id

Figure 8: Structure of a NMT message

byte (byte 0) is the command to the desired state. The second byte (byte 1) is the id of the
desired node. If the second byte is 0 - all nodes are addressed. This enables the simultaneous
control of all nodes with one command. The commands are listed in table 11.

Command | Command-byte (hex/dec)
Start node 01h/01
Stop node 02h/02
Set Pre-Operational 80h/128
Reset node 81h/129

Table 11: NMT-Commands

3.4.1 Heartbeat

The TX-Driver can be configured to produce a periodic heartbeat-message. This message
can be used to monitor the presence of a node. The period of this message is 2 seconds.
The message is one byte long and contains the state of the heartbeat producing node. The

id ByteO

17924-node-id State

Figure 9: Structure of the Heartbeat message

states are listed in table 12. The TX-Driver can be configured to produce a heartbeat in
the CAN-Config-Register (2004h). The heartbeat is available in the states Operational, Pre-
Operational and Stopped. A heartbeat message is never confirmed by the master. Regardless
of the configuration in the CAN-Config-Register - one heartbeat-message is transmitted after
Boot-Up. The purpose of this Boot-Up message is to indicate a newly connected device on
the network.

10

State | byte 0 (hex/dec)

Boot-Up 0Oh/0
Stopped 04h/04
Operational 5h/5
Pre-Operational 7Fh/127

Table 12: States in the heartbeat-message

3.5 Error Indication

The TX-Driver transmits error messages if those occur. The identifier of an error message
is always 80h+node-id (i.e. a device configured with a node-id of 2 will transmit an error
message with an CAN-identifier of 130(82h)). The error code is a 16-bit value (2 bytes). The

supported codes are:

Code (hex) ‘ meaning
1000h Generic Error
8120h CAN Passive
8200h Protocol Error

Table 13: Error codes

11

